Abstract

Diabetic retinopathy (DR) is still the major cause of visual loss in working-aged people, one of the critical pathological processes are retinal microglia-mediated inflammation. Our previous study demonstrated that enhanced M1 microglial polarization was involved in retinal inflammation in DR, but the detailed mechanism needs further investigation. Circular RNAs (circRNAs) are important kind of noncoding RNAs involved in the regulation of various cell biological processes. Herein, the circRNA expression profiles of BV2 mouse microglia treated with or without glucose were detected, and a total of 347 differentially expressed circRNAs were identified in glucose-treated BV2 cells. The key circRNA mm9_circ_014683 increased after glucose stimulation. Inhibiting or overexpressing mm9_circ_014683 showed no effect on the proliferation and apoptosis of microglia. Inhibiting mm9_circ_014683 impeded M1 polarization and promoted M2 polarization, and overexpressing mm9_circ_014683 showed the opposite effect. A total of 216 differentially expressed genes were identified in mm9_circ_014683-knockdown BV2 cells, which were enriched in several signaling pathways, including the NFκB signaling pathway. Moreover, mm9_circ_014683 positively regulated the canonical, NFκB signaling pathway. Besides, mm9_circ_014683 was highly expressed in the retinal microglia of diabetic mice, and intraocular injection of Lv-circRNA inhibited M1 but enhanced M2 retinal microglial polarization. In conclusion, mm9_circ_014683 regulates microglial polarization through the canonical NFκB signaling pathway in diabetic retinopathy. This study may provide insight into the pathogenesis and treatment of DR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.