Abstract

Genetic algorithms (GA) were used to solve one of the multidimensional problems in computational chemistry, the optimization of force field parameters. The correlation between the composition of the GA, its parameters (p(c), p(m)) and the quality of the results were investigated. The composition was studied for all combinations of a Simple GA/Steady State GA with a Roulette Wheel/Tournament Selector using different values each for crossover (0.5, 0.7, 0.9) and mutation rates (0.01, 0.02, 0.05, 0.10, 0.20). The results show that the performance is strongly dependent on the GA scheme, where the Simple GA/Tournament Selector yields the best results. Two new MM3 parameters were introduced for rhenium compounds with coordination number four (204) and coordination number five (205), the formal oxidation states of rhenium ranging from +V to +VII. A manifold of parameters (Re-C, N, O, S) was obtained by using a diverse set of CSD structures. The advantage of the GA vs. UFF calculations is shown by comparison of several examples. The GA optimized parameters were able to reproduce the geometrical data of the X-ray structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.