Abstract

Emerging application scenarios for Cyber Physical Systems often require the networking of sensing and actuation nodes at high data rate and through wireless links. Lot of surveillance and control systems adopt as input sensors distributed video cameras operating at different spectral ranges and covering different fields of view. Arrays of radio/light detection and ranging (Radar/Lidar) sensors are often used to detect the presence of targets, of their speeds, distance and direction. The relevant bandwidth requirement amounts to some Gbps. The wireless connection is essential for easy and flexible deployment of the sensing/actuation nodes. A key technology to keep low the size and weight of the nodes is the fully integration at mm-waves of wireless transceivers sustaining Gbps data rate. To this aim, this paper presents the design of 60 GHz transceiver key blocks (Low Noise Amplifier, Power Amplifier, Antenna) to ensure connection distances up to 10 m and data rate of several Gbps. Around 60 GHz there are freely-available (unlicensed) worldwide several GHz of bandwidth. By using a CMOS Silicon-on-Insulator technology RF, analog and digital baseband circuitry can be integrated single-chip minimizing noise coupling. At mm-wave the wavelength is few mm and hence even the antenna is integrated on chip reducing cost and size vs. off-chip antenna solutions. The proposed transceiver enables at physical layer the implementation in compact nodes of links with data rates of several Gbps and up to 10 m distance; this is suited for home/office scenarios, or on-board vehicles (cars, trains, ships, airplanes) or body area networks for healthcare and wellness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call