Abstract
Structural comparison of multiple-chain protein complexes is essential in many studies of protein–protein interactions. We develop a new algorithm, MM-align, for sequence-independent alignment of protein complex structures. The algorithm is built on a heuristic iteration of a modified Needleman–Wunsch dynamic programming (DP) algorithm, with the alignment score specified by the inter-complex residue distances. The multiple chains in each complex are first joined, in every possible order, and then simultaneously aligned with cross-chain alignments prevented. The alignments of interface residues are enhanced by an interface-specific weighting factor. MM-align is tested on a large-scale benchmark set of 205 × 3897 non-homologous multiple-chain complex pairs. Compared with a naïve extension of the monomer alignment program of TM-align, the alignment accuracy of MM-align is significantly higher as judged by the average TM-score of the physically-aligned residues. MM-align is about two times faster than TM-align because of omitting the cross-alignment zone of the DP matrix. It also shows that the enhanced alignment of the interfaces helps in identifying biologically relevant protein complex pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.