Abstract

Variance components estimation and mixed model analysis are central themes in statistics with applications in numerous scientific disciplines. Despite the best efforts of generations of statisticians and numerical analysts, maximum likelihood estimation (MLE) and restricted MLE of variance component models remain numerically challenging. Building on the minorization–maximization (MM) principle, this article presents a novel iterative algorithm for variance components estimation. Our MM algorithm is trivial to implement and competitive on large data problems. The algorithm readily extends to more complicated problems such as linear mixed models, multivariate response models possibly with missing data, maximum a posteriori estimation, and penalized estimation. We establish the global convergence of the MM algorithm to a Karush–Kuhn–Tucker point and demonstrate, both numerically and theoretically, that it converges faster than the classical EM algorithm when the number of variance components is greater than two and all covariance matrices are positive definite. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.