Abstract

Multi-label learning paradigm, which aims at dealing with data associated with potential multiple labels, has attracted a great deal of attention in machine intelligent community. In this paper, we propose a novel multi-label twin support vector machine (MLTSVM) for multi-label classification. MLTSVM determines multiple nonparallel hyperplanes to capture the multi-label information embedded in data, which is a useful promotion of twin support vector machine (TWSVM) for multi-label classification. To speed up the training procedure, an efficient successive overrelaxation (SOR) algorithm is developed for solving the involved quadratic programming problems (QPPs) in MLTSVM. Extensive experimental results on both synthetic and real-world multi-label datasets confirm the feasibility and effectiveness of the proposed MLTSVM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.