Abstract

This paper proposes a maximum likelihood sequence estimation (MLSE) for the differential space-time block code (DSTBC) in cooperation with blind linear prediction (BLP) of fast frequency-flat fading channels. This method that linearly predicts the fading complex envelope derives its linear prediction coefficients by the method of Lagrange multipliers, and does not require data of decision-feedback or information on the channel parameters such as the maximum Doppler frequency in contrast to conventional ones. Computer simulations under fast fading conditions demonstrate that the proposed method with an appropriate degree of polynomial approximation is superior in BER performance to the conventional method that estimates the coefficients by the RLS algorithm using a training sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.