Abstract

In this paper, equalization for transmission over doubly selective channels is discussed. The symbol-by-symbol maximum a posteriori probability (MAP) equalizer and the maximum-likelihood sequence estimation (MLSE) are discussed. The doubly selective channel is modeled using the basis expansion model (BEM). Using the BEM allows for an easy and low-complexity mechanism for constructing the channel trellis to implement the MLSE and the MAP equalizer. The MLSE and the MAP equalizer are implemented for single-carrier transmission and for multicarrier transmission implemented using orthogonal frequency-division multiplexing (OFDM). In this scenario, a complexity-diversity tradeoff can be observed. In addition, we propose a joint estimation and equalization technique for doubly selective channels. In this joint estimation and equalization technique, the channel state information (CSI) is obtained in an iterative manner. Simulation results show that the performance of the joint channel estimation and equalization approaches the performance when perfect CSI is available at the receiver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.