Abstract

The Perturbed Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) equation of state (EoS) is widely used to predict fluid-phase thermodynamics, but parameterization of PCP-SAFT for individual molecules is often challenging. We propose a machine learning framework called ML-SAFT that can turn experimental data in predictive models of PCP-SAFT parameters. We demonstrate methods for automated large scale regression of PCP-SAFT parameters and thus create a large PCP-SAFT parameter dataset in the literature. We then evaluate several machine learning architectures for predicting PCP-SAFT parameters. We find that our best model provides accurate predictions for a wider range of molecules than existing predictive methods with 40 % average absolute deviation (% AAD) in vapor pressure predictions and 8 % AAD in density predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.