Abstract
Autism spectrum disorder (ASD) is growing faster than ever before. Autism detection is costly and time intensive with screening procedures. Autism can be detected at an early stage by the development of artificial intelligence and machine learning (ML). While a number of experiments using many approaches were conducted, these studies provided no conclusion as to the prediction of autism characteristics in various age groups. This chapter is therefore intended to suggest an accurate MLASD predictive model based on the ML methodology to prevent ASD for people of all ages. It is a method for prediction. This survey was conducted to develop and assess ASD prediction in an artificial neural network (ANN). AQ-10 data collection was used to test the proposed pattern. The findings of the evaluation reveal that the proposed prediction model has improved results in terms of consistency, specificity, sensitivity, and dataset accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.