Abstract

Over the past few decades, the substantial growth in enterprise-data availability and the advancements in Artificial Intelligence (AI) have allowed companies to solve real-world problems using Machine Learning (ML). ML Operations (MLOps) represents an effective strategy for bringing ML models from academic resources to useful tools for solving problems in the corporate world. The current literature on MLOps is still mostly disconnected and sporadic. In this work, we review the existing scientific literature and we propose a taxonomy for clustering research papers on MLOps. In addition, we present methodologies and operations aimed at defining a ML pipeline to simplify the release of ML applications in industry. The pipeline is based on ten steps: business problem understanding, data acquisition, ML methodology, ML training & testing, continuous integration, continuous delivery, continuous training, continuous monitoring, explainability, and sustainability. The scientific and business interest and the impact of MLOps have grown significantly over the past years. The definition of a clear and standardized methodology for conducting MLOps projects is the main contribution of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.