Abstract

In order to evaluate energy and momentum components associated with two different black hole models, i.e. the electric and magnetic black holes, we use the Moller energy-momentum prescriptions both in Einstein’s theory of general relativity and the teleparallel gravity. We obtain the same energy and momentum distributions in both of these different gravitation theories. The energy distribution of the electric black hole depends on the mass M and the magnetic black hole energy distribution depends on the mass M and charge Q. In the process, we notice that (a) the energy obtained in teleparallel gravity is also independent of the teleparallel dimensionless coupling parameter, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel model, (b) our results also sustains the importance of the energy-momentum definitions in the evaluation of the energy distribution of a given spacetime, and (c) the results obtained support the viewpoint of Lessner that the Moller energy-momentum complex is a powerful concept of energy and momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.