Abstract
MLL fusion genes are a predominant feature of acute leukemias in infants and in secondary acute myeloid leukemia (AML) associated with prior chemotherapy with topo-II poisons. The former is considered to possibly arise in utero via transplacental chemical exposure. A striking feature of these leukemias is their malignancy and remarkably brief latencies implying the rapid acquisition of any necessary additional mutations. We have suggested that these coupled features might be explained if MLL fusion gene encoded proteins rendered cells more vulnerable to further DNA damage and mutation in the presence of chronic exposure to the agent(s) that induced the MLL fusion itself. We have tested this idea by exploiting a hormone regulated MLL-ENL (MLLT1) activation system and show that MLL-ENL function in normal murine progenitor cells substantially increases the incidence of chromosomal abnormalities in proliferating cells that survive exposure to etoposide VP-16. This phenotype is associated with an altered pattern of cell cycle arrest and/or apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.