Abstract

SummarySoftware‐defined networking (SDN) has been developed to separate network control plane from forwarding plane which can decrease operational costs and the time it takes to deploy new services compared to traditional networks. Despite these advantages, this technology brings threats and vulnerabilities. Consequently, developing high‐performance real‐time intrusion detection systems (IDSs) to classify malicious activities is a vital part of SDN architecture. This article introduces two created datasets generated from SDN using Mininet and Ryu controller with different feature extraction tools that contain normal traffic and different types of attacks (Fin flood, UDP flood, ICMP flood, OS probe scan, port probe scan, TCP bandwidth flood, and TCP syn flood) that is used for training a number of supervised binary classification machine learning algorithms such as k‐nearest neighbor, AdaBoost, decision tree (DT), random forest, naive Bayes, multilayer perceptron, support vector machine, and XGBoost. The DT algorithm has achieved high scores to fit a real‐time application achieving F1 score on attack class of 0.9995, F1 score on normal class of 0.9983, and throughput score of 6,737,147.275 samples per second with a total number of three features. In addition, using data preprocessing to reduce the model complexity, thereby increasing the overall throughput to fit a real‐time system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.