Abstract
Feature selection is a pre-processing procedure of choosing the optimal feature subsets for constructing model, yet it is difficult to satisfy the requirements of reducing number of features and maintaining classification accuracy. Towards this problem, we propose novel multi-objectives large-scale cooperative coevolutionary algorithm for three-objectives feature selection, termed MLFS-CCDE. Firstly, a cooperative searching framework is designed for efficiently and effectively seeking for the optimal feature subset. Secondly, in the framework, three objectives, feature’s number, classification accuracy and total information gain are established for guiding the evolution of features’ combination. Thirdly, in framework’s decomposition process, cluster-based decomposition strategy is elaborated for reducing the computation; in framework’s coevolution process, dual indicator-based representatives are elaborated for balancing the representative solution’ convergence and diversity. Finally, to verify framework’s practicability, a heart disease diagnosis system based on MLFS-CCDE framework is constructed in cardiology. Numerical experiments demonstrate that the proposed MLFS-CCDE outperforms its competitors in terms of both classification accuracy and metrics of features’ number.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.