Abstract

The method of moments(MoM) is one of the most popular integral-equation-based full-wave simulation methods, and the multi-level fast multipole method(MLFMM) algorithm can be used for its efficient calculation. When calculating the surface current on the large scatterer in the MoM or MLFMM, iterative methods for the final matrix inversion are used. Among them, BiCGstab(l) has been widely adopted due to its good convergence rate. The number of iterations can be reduced when l becomes larger, but the number of operations per iteration is increased. Herein, we analyze the computational complexity of BiCGstab(l) in the MLFMM method and propose an optimum choice of l.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call