Abstract

Domain decomposition ideas have long been an essential tool for the solution of PDEs on parallel computers. In recent years many research efforts have been focused on recursively employing domain decomposition methods to obtain multilevel preconditioners to be used with Krylov solvers. In this context, we developed MLD2P4 (MultiLevel Domain Decomposition Parallel Preconditioners Package based on PSBLAS), a package of parallel multilevel preconditioners that combines additive Schwarz domain decomposition methods with a smoothed aggregation technique to build a hierarchy of coarse-level corrections in an algebraic way. The design of MLD2P4 was guided by objectives such as extensibility, flexibility, performance, portability, and ease of use. They were achieved by following an object-based approach while using the Fortran 95 language, as well as by employing the PSBLAS library as a basic framework. In this article, we present MLD2P4 focusing on its design principles, software architecture, and use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.