Abstract
Background and purposeThe purpose of this work is to present the clinical experience from the first-in-human trial of real-time tumor targeting via MLC tracking for stereotactic ablative body radiotherapy (SABR) of lung lesions. Methods and materialsSeventeen patients with stage 1 non-small cell lung cancer (NSCLC) or lung metastases were included in a study of electromagnetic transponder–guided MLC tracking for SABR (NCT02514512). Patients had electromagnetic transponders inserted near the tumor. An MLC tracking SABR plan was generated with planning target volume (PTV) expanded 5 mm from the end-exhale gross tumor volume (GTV). A clinically approved comparator plan was generated with PTV expanded 5 mm from a 4DCT-derived internal target volume (ITV). Treatment was delivered using a standard linear accelerator to continuously adapt the MLC based on transponder motion. Treated volumes and reconstructed delivered dose were compared between MLC tracking and comparator ITV-based treatment. ResultsAll seventeen patients were successfully treated with MLC tracking (70 successful fractions). MLC tracking treatment delivery time averaged 8 minutes. The time from the start of CBCT to the end of treatment averaged 22 minutes. The MLC tracking PTV for 16/17 patients was smaller than the ITV-based PTV (range −1.6% to 44% reduction, or −0.6 to 18 cc). Reductions in mean lung dose (27 cGy) and V20Gy (50 cc) were statistically significant (p < 0.02). Reconstruction of treatment doses confirmed a statistically significant improvement in delivered GTV D98% (p < 0.05) from planned dose compared with the ITV-based plans. ConclusionThe first treatments with lung MLC tracking have been successfully performed in seventeen SABR patients. MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.