Abstract
In the last decade the concept of context has been extensively exploited in many research areas, e.g., distributed artificial intelligence, multi agent systems, distributed databases, information integration, cognitive science, and epistemology. Three alternative approaches to the formalization of the notion of context have been proposed: Giunchiglia and Serafini's Multi Language Systems (ML systems), McCarthy's modal logics of contexts, and Gabbay's Labelled Deductive Systems. Previous papers have argued in favor of ML systems with respect to the other approaches. Our aim in this paper is to support these arguments from a theoretical perspective. We provide a very general definition of ML systems, which covers all the ML systems used in the literature, and we develop a proof theory for an important subclass of them: the MR systems. We prove various important results; among other things, we prove a normal form theorem, the sub-formula property, and the decidability of an important instance of the class of the MR systems. The paper concludes with a detailed comparison among the alternative approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.