Abstract
Abstract. In many spatial and spatial‐temporal models, and more generally in models with complex dependencies, it may be too difficult to carry out full maximum‐likelihood (ML) analysis. Remedies include the use of pseudo‐likelihood (PL) and quasi‐likelihood (QL) (also called the composite likelihood). The present paper studies the ML, PL and QL methods for general Markov chain models, partly motivated by the desire to understand the precise behaviour of the PL and QL methods in settings where this can be analysed. We present limiting normality results and compare performances in different settings. For Markov chain models, the PL and QL methods can be seen as maximum penalized likelihood methods. We find that QL is typically preferable to PL, and that it loses very little to ML, while sometimes earning in model robustness. It has also appeal and potential as a modelling tool. Our methods are illustrated for consonant‐vowel transitions in poetry and for analysis of DNA sequence evolution‐type models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.