Abstract

Optimal first-line treatment that enables deeper and longer remission is crucially important for newly diagnosed multiple myeloma (NDMM). In this study, we developed the machine learning (ML) models predicting overall survival (OS) or response of the transplant-ineligible NDMM patients when treated by one of the two regimens—bortezomib plus melphalan plus prednisone (VMP) or lenalidomide plus dexamethasone (RD). Demographic and clinical characteristics obtained during diagnosis were used to train the ML models, which enabled treatment-specific risk stratification. Survival was superior when the patients were treated with the regimen to which they were low risk. The largest difference in OS was observed in the VMP-low risk & RD-high risk group, who recorded a hazard ratio of 0.15 (95% CI: 0.04–0.55) when treated with VMP vs. RD regimen. Retrospective analysis showed that the use of the ML models might have helped to improve the survival and/or response of up to 202 (39%) patients among the entire cohort (N = 514). In this manner, we believe that the ML models trained on clinical data available at diagnosis can assist the individualized selection of optimal first-line treatment for transplant-ineligible NDMM patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.