Abstract

Adenoviruses (AdVs) constitute a diverse family with many pathogenic types that infect a broad range of hosts. Understanding the pathogenesis of adenoviral infections is not only clinically relevant but also important to elucidate the potential use of AdVs as vectors in therapeutic applications. For an adenoviral infection to occur, attachment of the viral ligand to a cellular receptor on the host organism is a prerequisite and, in this sense, it is a criterion to decide whether an adenoviral infection can potentially happen. The interaction between any virus and its corresponding host organism is a specific kind of protein-protein interaction (PPI) and several experimental techniques, including high-throughput methods are being used in exploring such interactions. As a result, there has been accumulating data on virus-host interactions including a significant portion reported at publicly available bioinformatics resources. There is not, however, a computational model to integrate and interpret the existing data to draw out concise decisions, such as whether an infection happens or not. In this study, accepting the cellular entry of AdV as a decisive parameter for infectivity, we have developed a machine learning, more precisely support vector machine (SVM), based methodology to predict whether adenoviral infection can take place in a given host. For this purpose, we used the sequence data of the known receptors of AdVs, we identified sets of adenoviral ligands and their respective host species, and eventually, we have constructed a comprehensive adenovirus–host interaction dataset. Then, we committed interaction predictions through publicly available virus-host PPI tools and constructed an AdV infection predictor model using SVM with RBF kernel, with the overall sensitivity, specificity, and AUC of 0.88 ± 0.011, 0.83 ± 0.064, and 0.86 ± 0.030, respectively. ML-AdVInfect is the first of its kind as an effective predictor to screen the infection capacity along with anticipating any cross-species shifts. We anticipate our approach led to ML-AdVInfect can be adapted in making predictions for other viral infections.

Highlights

  • Adenoviruses (AdVs) are relatively large, nonenveloped, icosahedral viruses composed of a complex protein capsid surrounding the core proteins and the dsDNA genome

  • Based on the said criteria, we curated the set of receptors composed of coxsackie and adenovirus receptor (CAR), cluster of differentiation (CD) 46, CD80 and CD86, desmoglein-2 (DSG2), integrin subunit alpha-V (ITAV), macrophage scavenger receptor 1 (MSR1), and lung macrophage scavenger receptor SR-A6 (MARCO) and a brief overview on individual receptors and experimental methodology of receptor identification is given below (Lasswitz et al, 2018; Stasiak and Stehle, 2020)

  • Out of 40 host species, CAR is found in 32 organisms, CD46 in 25, CD80 in 23, CD86 in 33, ITAV in 36, DSG2 in 38, and the scavenger receptors MSR1 and MARCO exist in 25 and 17 of these host species, respectively

Read more

Summary

Introduction

Adenoviruses (AdVs) are relatively large, nonenveloped, icosahedral viruses composed of a complex protein capsid surrounding the core proteins and the dsDNA genome. They belong to a diverse family called Adenoviridae, with several hundred recognized members capable of infecting a broad variety of cell types across several organisms (Rowe et al, 1953). CAR functions as a receptor for all HAdV species, except for the B species and interacts with the knob domain of the viral fiber protein (Tomko et al, 1997). For most species B HAdVs, which do not bind CAR, CD46 was shown to function as a cellular receptor (Gaggar et al, 2003). In murine alveolar macrophage-like MPI cells MARCO was shown to be an entry receptor for HAdV-C5 and hexon protein was suggested to be relevant to the viral ligand (Stichling et al, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call