Abstract

Acute myeloid leukemia (AML) is the most lethal form of AML due to disease relapse. Cyclin dependent kinase 8 (CDK8) is a serine/threonine kinase that belongs to the family of Cyclin-dependent kinases and is an emerging target for the treatment of AML. MK256, a potent, selective, and orally available CDK8 inhibitor was developed to target AML. We sought to examine the anticancer effect of MK256 on AML. In CD34+/CD38- leukemia stem cells, we found that MK256 induced differentiation and maturation. Treatment of MK256 inhibited proliferation of AML cell lines. Further studies of the inhibitory effect suggested that MK256 not only downregulated phosphorylated STAT1(S727) and STAT5(S726), but also lowered mRNA expressions of MCL-1 and CCL2 in AML cell lines. Efficacy of MK256 was shown in MOLM-14 xenograft models, and the inhibitory effect on phosphorylated STAT1(S727) and STAT5(S726) with treatment of MK256 was observed <i>in vivo</i>. Pharmacologic dynamics study of MK256 in MOLM-14 xenograft models showed dose-dependent inhibition of the STAT pathway. Both <i>in vitro</i> and <i>in vivo</i> studies suggested that MK256 could effectively downregulate the STAT pathway. <i>In vitro</i> ADME, pharmacological kinetics, and toxicity of MK256 were profiled to evaluate the drug properties of MK256. Our results show that MK256 is a novel CDK8 inhibitor with a desirable efficacy and safety profile and has great potential to be a promising drug candidate for AML through regulating the STAT pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call