Abstract

The objective of this study was to improve shoot regeneration from grapefruit. Because many commercially grown citrus types are apomictic, important in vitro applications such as Agrobacterium-mediated transformation commonly use epicotyl explants from in vitro seedlings; thus, adequate adventitious shoot production is an important prerequisite for efficient use of these applications. Eight plant growth regulators were studied—six cytokinins (6-benzylaminopurine, kinetin, zeatin trans-isomer, 6-[γ,γ-dimethylallylamino] purine, zeatin riboside trans-isomer and meta-topolin) and two auxins (α-naphthalene acetic acid and indole-3-acetic acid). An iterative design strategy was followed that included mixture and mixture-amount experimental designs suitable for resolving proportional and concentration effects; in vitro effects of cytokinins and auxins are affected by both proportion and concentration. One-centimeter-long explants were excised from the epicotyl of etiolated, in vitro-grown seedlings. Explants were placed onto experimental formulations and cultured in growth cabinets at 27°C over 6 wk, which included 2 wk in the dark followed by 4 wk in the light. The results indicated that (1) 6-benzylaminopurine or zeatin riboside were the most effective cytokinins for inducing shoot regeneration in citrus; (2) zeatin riboside singly or in combination with indole-3-acetic acid resulted in the highest quality, the greatest number of explants with buds/shoots, and the greatest shoot number; and (3) 6-benzylaminopurine and indole-3-acetic acid improved shoot regeneration vs. 6-benzylaminopurine at a considerably lesser cost than zeatin riboside and indole-3-acetic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call