Abstract

The Bayesian solution to the problem of tracking a target with measurement association uncertainty gives rise to mixture distributions, which are composed of an ever increasing number of components. To produce a practical tracking filter, the growth of components must be controlled by approximating the mixture distribution. Two mixture reduction schemes (a joining algorithm and a clustering algorithm) have been derived for this purpose. If significant well spaced mixture components are present, these techniques can provide a useful improvement over the probabilistic data association filter (PDAF) approach, which reduces the mixture to a single Gaussian component at each time step. For the standard problem of tracking a point target in uniform random clutter, a Monte Carlo simulation study has been employed to identify the region of the problem parameter space where significant performance improvement is obtained over the PDAF. In the second part of this paper, the formal Bayesian filter is derived for an extended target consisting of an array of measurement sources with association uncertainty. A practical multiple hypothesis filter is implemented using mixture reduction and simulation results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.