Abstract

The roots of Salix spp. can be colonized by two types of mycorrhizal fungi (ectomycorrhizal and arbuscular) and furthermore by dark-septate endophytes. The fungal root colonization is affected by the plant genotype, soil properties and their interactions. However, the impact of host diversity accomplished by mixing different Salix genotypes within the site on root-associated fungi and P-mobilization in the field is not known. It can be hypothesized that mixing of genotypes with strong eco-physiological differences changes the diversity and abundance of root-associated fungi and P-mobilization in the mycorrhizosphere based on different root characteristics. To test this hypothesis, we have studied the mixture of two fundamentally eco-physiologically different Salix genotypes (S. dasyclados cv. ‘Loden’ and S. schwerinii × S. viminalis cv. ‘Tora’) compared to plots with pure genotypes in a randomized block design in a field experiment in Northern Germany. We assessed the abundance of mycorrhizal colonization, fungal diversity, fine root density in the soil and activities of hydrolytic enzymes involved in P-mobilization in the mycorrhizosphere in autumn and following spring after three vegetation periods. Mycorrhizal and endophytic diversity was low under all Salix treatments with Laccaria tortilis being the dominating ectomyorrhizal fungal species, and Cadophora and Paraphaeosphaeria spp. being the most common endophytic fungi. Interspecific root competition increased richness and root colonization by endophytic fungi (four taxa in the mixture vs. one found in the pure host genotype cultures) more than by ectomycorrhizal fungi and increased the activities of hydrolytic soil enzymes involved in the P-mineralization (acid phosphatase and β-glucosidase) in mixed stands. The data suggest selective promotion of endophytic root colonization and changed competition for nutrients by mixture of Salix genotypes.

Highlights

  • Mycorrhizal fungi are central to soil fertility and can affect both crop productivity and cropping security (Rooney et al, 2009)

  • We hypothesize that the mixture of genotypes with strong eco-physiological differences changes the mycorrhiza formation and activities in the mycorrhizosphere, based on different root characteristics of the genotypes involved. To test this hypothesis we have studied the mixture of two fundamental eco-physiological different Salix genotypes

  • The present results confirm the significant impact of the Salix genotype on its phenotypical traits (Cunniff et al, 2015) including the mycorrhizal and endophytic fungal colonization and host-specific differences in the fungal root colonization within a plant community as described by Toju et al (2013b)

Read more

Summary

Introduction

Mycorrhizal fungi are central to soil fertility and can affect both crop productivity and cropping security (Rooney et al, 2009) Both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi are known to increase the uptake of nutrients like phosphorus (P) and nitrogen (N) by the host plants, especially in infertile soils. Their functions and benefits for the host plants might not be equivalent (Jones et al, 1998). Endophytic fungi and mycorrhizal fungi can interact in their impact on the plant growth (Rillig et al, 2014). AM fungi were revealed to be able to modulate the impact of endophytic fungi beneficially for the plant growth (Wezowicz et al, 2017)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.