Abstract

In this work, the two mixtures of ionic liquid 1-n-propyl-4-amino-1,2,4-triazolium bromide and each type of the aggregated single-walled carbon nanotubes (SWCNTs), i.e. bundled SWCNTs and non-bundled, were investigated using molecular dynamics (MD) simulations. The structural characteristics of a SWCNT in the ionic liquid (IL) were examined by analyzing the radial distribution functions and the results show that the nearest IL cations to the SWCNT surface can approach it from three different positions. Also, the possibility of the dispersion of the bundled SWCNTs containing three and seven carbon nanotubes was investigated. The obtained results showed that under the investigated conditions, the IL cannot disperse the bundled SWCNTs, but it can disperse six and seven aggregated non-bundled ones. Moreover, we investigated the underlying dispersion mechanism of the aggregated SWCNTs in the IL, using MD simulations. The self diffusion coefficients and transport numbers of the cations and anions were computed in the systems containing pure IL, the mixtures of IL and one, six and seven non-bundled SWCNTs and the systems containing IL and bundled SWCNTs with three and seven carbon nanotubes. The obtained results showed that the diffusion coefficients and the transport numbers of the cations are more than anions in all mentioned systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call