Abstract
ObjectiveTo assess the effect of a mixture of five herbal extracts (FT-5) on insulin resistance, glucose/lipid metabolism, hepatic steatosis, and to investigate whether the combination of FT-5 and pioglitazone would provide a robust effect on diabetes treatment, while may minimize undesirable side-effects of pioglitazone in diabetic Ay gene (KKAy) mice. MethodsSeven-week-old KKAy mice were randomly divided into five groups: control (CON) group, FT-5 (2.0 g/kg) group, pioglitazone (20 mg/kg) (PIO) group, pioglitazone (20 mg/kg)+FT-5 (2.0 g/kg) (P+F) group. Age-matched C57BL/6J mice were used as the control group. After seven weeks of continuous intragastric administration of medication, the glucose metabolism, insulin sensitivity and lipid metabolism of KKAy mice were evaluated by assessing the fasting blood glucose (FBG), oral glucose tolerance test (OGTT), fasting serum insulin (FINS), insulin tolerance test (ITT), homeostasis model of assessment-insulin resistance index (HOMA-IR), total cholesterol (TC), total triglycerides (TG), and free fatty acids (FFA) in plasma and liver. Plasma and hepatic adiponectin were measured via enzyme-linked immunosorbent assays. Genes related to adipogenesis and lipolysis in white adipose tissues (WAT) and liver were examined by real-time polymerase chain reaction. Lipid metabolism-related protein expression in the liver of KKAy mice were detected by western blotting. ResultsPIO treatment remarkably improved insulin resistance. However, it also showed substantial side effects. FT-5 group exhibited no significant decrease in serum glucose. However, it reduced fasting plasma TG levels and improved hepatic steatosis of KKAy mice. P + F group showed improved insulin resistance and similar body weight gain, as compared with control group. The mRNA expression of genes related to fatty acid oxidation was markedly up-regulated in the liver of P + F group. Pioglitazone administration markedly decreased the phosphorylation levels of AMPK, as compared with all other groups. Besides, even though plasma adiponectin increased in PIO, FT-5, P + F group, adipoR2 gene expression significantly decreased in the liver of PIO group. ConclusionFT-5 decreased plasma TG and alleviated aggravating hepatic steatosis induced by pioglitazone in KKAy mice. FT-5's mechanism might be associated with its ability to activate the AdipoR2/AMPK pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.