Abstract
The optimization of diesel engine piston bowl geometries has a crucial role in improving the near-wall flame evolution for better air/fuel mixing and soot reduction. With these aims, an innovative piston bowl for a light-duty diesel engine was designed, coupling both a sharp-stepped lip and radial bumps in the inner bowl rim. The impact of the proposed design was investigated through both 3D-CFD and single-cylinder optical engine. The numerical model, featuring a calibrated spray model and a detailed combustion mechanism, was used to analyse the non-reactive air/fuel mixing and the combustion processes. Results highlighted a reduced jet-to-jet interaction and better air/fuel mixing for the innovative bowl with respect to a conventional re-entrant design, thus enabling faster combustion process after the end of main injection. Numerical results in terms of flame’s kinematic and oxidation process were compared with the combustion image velocimetry (CIV) and OH* chemiluminescence from the optical engine, showing higher velocity near the radial bumps, and faster flame recirculation towards the piston center. Moreover, both experiments and simulations showed a more intense OH distribution in the radial-bumps region and above the step during the first stage of the combustion process, thanks to the enhanced air/fuel mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.