Abstract

Historically most harmful algal species (HAS) have been thought to be strictly phototrophic. Mixotrophy, the use of phototrophy and heterotrophy in combination, has been emphasized as operative mainly in nutrient-poor habitats as a mechanism for augmenting nutrient supplies. Here we examine an alternate premise, that many harmful algae which thrive in eutrophic habitats are mixotrophs that respond both directly to nutrient inputs, and indirectly through high abundance of bacterial and algal prey that are stimulated by the elevated nutrients. From review and synthesis of the available data, mixotrophy occurs in all HAS examined thus far in the organic substrate- and prey-rich habitats of eutrophic estuarine and marine coastal waters. Where data are available comparing phototrophy versus mixotrophy, mixotrophy in eutrophic habitats generally is significant in nutrient acquisition and growth of HAS and, therefore, likely important in the development and maintenance of their blooms. In eutrophic habitats phagotrophic mixotrophs, in particular, have been shown to attain higher growth than when in phototrophic mode. Yet for many HAS, quantitative data about the role of mixotrophy in nutrition, growth, and blooms are lacking, especially relating laboratory information to natural field assemblages, so that the relative importance of photosynthesis, dissolved organic nutrients, and ingestion of prey largely remain unknown. Research is needed to assess simultaneously the roles of phototrophy, osmotrophy and phagotrophy in the nutritional ecology of HAS in eutrophic habitats, spanning bloom initiation, development and senescence. From these data, models that include the role of mixotrophy can be developed to gain more realistic insights about the nutritional factors that control harmful algae in eutrophic waters, and to strengthen predictive capability in predicting their blooms. An overall forecast that can be tested, as well, is that harmful mixotrophic algae will become more abundant as their food supplies increase in many estuaries and coastal waters that are sustaining chronic, increasing cultural eutrophication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call