Abstract

We introduce a natural extension of the exclusion process to hypergraphs and prove an upper bound for its mixing time. In particular we show the existence of a constant $C$ such that for any connected, regular hypergraph $G$ within some natural class, the $\varepsilon $-mixing time of the exclusion process on $G$ with any feasible number of particles can be upper-bounded by $CT_{\text{EX} (2,G)}\log (|V|/\varepsilon )$, where $|V|$ is the number of vertices in $G$ and $T_{\text{EX} (2,G)}$ is the 1/4-mixing time of the corresponding exclusion process with just two particles. Moreover we show this is optimal in the sense that there exist hypergraphs in the same class for which $T_{\mathrm{EX} (2,G)}$ and the mixing time of just one particle are not comparable. The proofs involve an adaptation of the chameleon process, a technical tool invented by Morris ([14]) and developed by Oliveira ([15]) for studying the exclusion process on a graph.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call