Abstract

We establish three remarkable consequences of non-negative curvature for sparse Markov chains. First, their conductance decreases logarithmically with the number of states. Second, their displacement is at least diffusive until the mixing time. Third, they never exhibit the cutoff phenomenon. The first result provides a nearly sharp quantitative answer to a classical question of Ollivier, Milman & Naor. The second settles a conjecture of Lee and Peres for graphs with non-negative curvature. The third offers a striking counterpoint to the recently established cutoff for non-negatively curved chains with uniform expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call