Abstract

In Lake Baldegg, Switzerland (surface area 5.3 km2, maximum depth 66 m) the analysis of data from moored instrument systems (atmospheric boundary layer, lake temperature distribution, bottom currents) was correlated to the long-term development of vertical mixing as seen from profiles of natural isotopes (radon-222, tritium and helium-3) and chemical species. The investigation shows: 1. Vertical mixing coefficients below 25 m are small. Consequently the vertical concentration distribution of sediment emanating species in the deep hypolimnion is controlled by the bottom topography. 2. Renewal of deep hypolimnic water is significant even during stratification. 3. Weakly damped internal waves characterize the internal dynamics during stratification. 4. Horizontal bottom currents play an important role in the hypolimnion mixing and can be correlated to internal waves during stratification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.