Abstract
We introduce a finite element model for neutrally buoyant particle suspensions of cylinders at zero Reynolds number and infinite Péclet number in the purely hydrodynamic limit, which allows us to access a high-accuracy fluid velocity field at any time during the simulation. We use the diffusive strip method to characterize the development of the concentration field in the fluid phase of sheared suspensions from initial thin filaments, and characterize the structures that form with their fractal dimension. We find that the growth of the fractal dimension of the filaments scales with the increase of mean square displacement in the fluid phase. Further, we measure the concentration distribution of tracers in the fluid phase, as well as the shear-induced self-diffusion coefficient in both the solid phase and the fluid phase. We demonstrate that the shear-induced self-diffusion coefficient is slightly larger in the fluid phase at infinite Péclet number. Finally, we investigate enhanced mass diffusivity in the fluid phase by systematic measurements of the shear-induced self-diffusion coefficient in the fluid phase for a wide range of fluid tracer Péclet numbers. We find that the functional dependence $D_{s}/D=1+\unicode[STIX]{x1D6FD}\unicode[STIX]{x1D719}^{\unicode[STIX]{x1D6FC}}Pe^{\unicode[STIX]{x1D701}}$ (where $D_{s}$ is the shear-induced self-diffusion coefficient, $D$ is the molecular diffusivity and $\unicode[STIX]{x1D719}$ is the particle volume fraction) fits the observations fairly well. We measure the constants $\unicode[STIX]{x1D6FD}=2.98\pm 0.39$, $\unicode[STIX]{x1D6FC}=1.61\pm 0.26$ and $\unicode[STIX]{x1D701}=0.900\pm 0.031$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.