Abstract

The process of laminar mixing in a T-shaped micro-device is studied by direct numerical simulation for a model binary mixture, composed of two fluids having the same density and the same viscosity, yet presenting a strong fluidity of mixing effect, i.e. the viscosity of the mixture is a function of its composition. In all cases, the inlet streams remain separated up to a critical Reynolds number, corresponding to the transition from a vortex flow regime, with a double mirror symmetry, to an engulfment flow regime, with a point central symmetry. In the case of a positive fluidity of mixing, the onset of the engulfment regime is accompanied by a sharp increase of the degree of mixing, with the critical Re decreasing as the fluidity of mixing increases. On the contrary, when the fluid mixture has a larger viscosity than that of its pure components, a viscous layer forms at the confluence of the inlet flows, which tends to keep the two streams separated. Therefore, in this case, no sudden increase of the degree of mixing is observed at the onset of the engulfment regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.