Abstract

Ejector entrainment ratios are influenced by both pressure-driven effects and the mixing between the primary and secondary streams, but the significance of each factor has not been identified in prior literature. This paper presents a computational simulation investigation of flow in a representative steam ejector to specify the contribution of mixing and pressure-driven effects to the overall ejector entrainment ratio under different operating conditions. The simulation of mixing layer growth was validated by using experimental data available in the literature, while the application of the computational method to the ejector flows was validated using static pressure distribution and entrainment ratio data in the particular experimental ejector arrangement. Simulation results show that under a fixed operating condition for the primary and discharge streams, at lower secondary pressure the ejector entrainment ratio is more strongly influenced by the mixing effects. For the particular ejector and the operating conditions considered herein, about 35% of the ejector entrainment ratio is due to mixing effects when the secondary stream pressure lift ratio is 4.5, while this portion is reduced to about 22% when the secondary stream pressure lift ratio is 1.6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.