Abstract

We develop a theory describing how a convectively unstable active field in an open flow is transformed into absolutely unstable by local mixing. Presenting the mixing region as one with a locally enhanced effective diffusion allows us to find the linear transition point to an unstable global mode analytically. We derive the critical exponent that characterizes weakly nonlinear regimes beyond the instability threshold and compare it with numerical simulations of a full two-dimensional flow problem. The obtained scaling law turns out to be universal as it depends neither on geometry nor on the nature of the mixing region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.