Abstract
With the increasing implementation of high-throughput experimentation techniques within research laboratories throughout the chemicals industries, it is important that the flow regimes in such unbaffled vessels be fully characterized and the implications on mixing performance be understood. Particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques are used in this work to study the mixing and hydrodynamic behavior of low-viscosity fluids in small stirred vessels with diameters 60 and 88 mm. Baffled and unbaffled vessels are considered, and the difference in efficiency is quantified at a constant power input per unit volume. Positioning the impeller into an eccentric configuration is adopted as a means toward improving mixing efficiency in unbaffled vessels. Results show that the eccentric configuration provides equally efficient mixing as the traditional baffled vessel in terms of mixing time and turbulent kinetic energy distribution. PIV and PLIF measurements show that the ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.