Abstract

Twelve days of microstructure measurements at the equator (140°W) in November 1984 showed a surprisingly strong effect of both the daily cycle of solar heating and wind on mixing in the upper ocean. Because of limited variations in atmospheric forcing and currents during the experiment, processes in the daily mixing cycle were similar from day to day. Only the intensity of mixing varied. The lower boundary of the diurnal surface layer separated two distinct mixing regimes, the diurnal surface layer and the thermocline. Within the diurnal surface layer (which extended to 10‐ to 35‐m depth), turbulent kinetic energy dissipation rates ε varied relatively little. Although variations in surface layer depth coincided with the daily change in direction of air‐sea surface buoyancy production of turbulent kinetic energy (or simply, the surface buoyancy flux), ε was significantly greater relative to the buoyancy flux than was expected for a simple convective layer. In the thermocline below the diurnal surface layer, ε was highly intermittent; the day‐night cycle was stronger, and variability was enhanced by turbulent “bursts” of 2–3 hours duration, which may be related to internal wave breaking events. The turbulent heat flux crossing 20‐m depth was almost equal to the surface heat flux less the irradiance penetrating below 20 m. Seventy percent of the surface heat flux was transported vertically to the water below 30 m by turbulent mixing. Only a negligible amount penetrated to the core of the Equatorial Undercurrent. The gradient Richardson number Ri distinguishes between statistically different mixing environments. However, ε cannot be predicted from the value of Ri, since the intensity of mixing depends on the intensity of forcing in a way not specified by the value of Ri alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.