Abstract

AbstractWe study entrainment in lock-release gravity currents using highly spatially resolved optical transmission experiments and quantitative analysis of the available potential energy of the flow. The principal results provide a resolution to the debate regarding the mechanism and degree of mixing in the head of a gravity current during the slumping phase. The nature of the complex internal mixing structure changes as a bore propagates from the tail to the head of the current during the slumping phase and overtakes its leading edge. We use quantitative methods to identify the connection between dynamics and entrainment and show that its manifestation as examined using different methodologies is the cause of previous contradictory experimental findings. Therefore, we conclude that the two main perspectives previously considered at odds are in accord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call