Abstract

In a recent paper, Melbourne and Terhesiu [Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math.189 (2012) 61–110] obtained results on mixing and mixing rates for a large class of noninvertible maps preserving an infinite ergodic invariant measure. Here, we are concerned with extending these results to the invertible setting. Mixing is established for a large class of infinite measure invertible maps. Assuming additional structure, in particular exponential contraction along stable manifolds, it is possible to obtain good results on mixing rates and higher order asymptotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.