Abstract

Micromixers have important applications in various pharmaceutical and medical fields. In the present study, the enhancement of mixing index in electroosmotic micromixer with different geometries is investigated. The commercial software COMSOL Multiphysics 5.4 is employed to solve the mathematical models. The SIMPLEC algorithm is employed for coupling the velocity and pressure fields. A second-order upwind scheme is used to reduce the artificial diffusivity. The results show a remarkable effect of the electric field on the mixing efficiency. The optimum geometry is the one with no obstacle in the mixing chamber. For the optimum geometry, it is demonstrated that the mixing efficiency increases with the voltage, however there are optimum values for frequency and inlet velocity in which the micromixer exhibits its best performance. The optimum values of frequency and inlet velocity are 8 Hz and 0.1 mm/s, respectively. It is revealed that the micromixer with no obstacle can reach the mixing efficiency of about 97%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.