Abstract

The process termed solution enhanced dispersion by supercritical fluids (SEDS™) is investigated. In the process particles are created in the rapid antisolvent process using a twin-fluid nozzle to co-introduce the SCF antisolvent and solution. Results of experimental and numerical studies are presented for two regions of pressure: above the mixture critical pressure where a single-phase exists for all solvent–antisolvent compositions, and below the mixture critical pressure where the two-phase region is observed. In experimental studies paracetamol (in the single-phase system) and nicotinic acid (in the two-phase system) were precipitated from ethanol solution using supercritical CO 2 as an antisolvent. To interpret the phenomena affecting creation of the supersaturation and to predict suprsaturation distribution, balances of momentum (flow), species (mixing), energy (heating and cooling) and population (droplet and crystal size distributions) are applied. The Favre averaged k– ɛ model of the CFD code FLUENT is applied together with specific models for precipitation subprocesses and Peng–Robinson equation of state. This includes application of the PDF closure procedure for precipitation and the drop breakage kernel that is based on multifractal theory of turbulence for modelling drop dispersion. Thermodynamic effects of mixing and decompression are included as well. Predicted values not always agree with experimental data but anyhow simulations predict all trends observed in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call