Abstract
AbstractNon‐linear internal waves (NLIW) are important to processes such as heat transfer, nutrient replenishment and sediment transport on continental shelves. Our unique field observations of shoaling NLIW of elevation revealed a variety of different wave shapes, varying from relatively symmetric waves, to waves with either steepened leading‐ or trailing‐faces; many had evidence of trapped cores. The wave shape was related to the position of maximum density overturns and diapycnal mixing. We observed both shear (where sheared currents overcome the stabilizing effects of stratification) and convective (where the local velocity exceeds the wave propagation speed) instabilities. The elevated diapycnal mixing (>10−3 m2s−1) and heat flux (>500 Wm−2) were predominantly local to the NLIW of elevation packets, and were transported onshore 10s kilometers with the wave packets. We demonstrate that wave steepness may be a useful bulk property for the parameterization of wave‐averaged diapycnal heat flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.