Abstract

ABSTRACT Waste from fruit processing can be used for obtaining additives as colorants and antioxidant compounds by extraction processes. Despite there are many works optimizing parameters as temperature and solvent concentration during this process, the mixture of solvents has not been optimized yet. Therefore, the present work aimed to find the optimum solvent mixture among water, ethanol, and acetone to obtain the maximum yields of phenolic compounds and monomeric anthocyanins from blue berry and grape marc by ultrasound-assisted extraction. For that, the Reticular Simplex Mixtures Design was used to obtain the models that can predict the optimum values of extraction yields. As a result, the quadratic model successfully fit the experimental data, demonstrating the best mixture solvents were the ones that presented a high percentage of water. This result was obtained not only for phenolic compound, but also for monomeric anthocyanin extraction from blue berry and grape marc. Further, using the optimum mixture, values of 502.2 GAE/100 g of phenolic compound and 1349.1 mg/100 g of monomeric anthocyanins from blue berry and 2642.4 GAE/100 g of phenolic compounds and 31.5 mg/100 of monomeric anthocyanins from grape marc were obtained. In conclusion, the optimum solvent demonstrated to be efficient extracting both components increasing the extraction yields and reducing the cost of extraction. Finally, by overlapping the optimization plot, a unique solvent mixture for obtaining a high yield of phenolic compound and anthocyanins at the same time from blue berry and grape marc was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.