Abstract

Flow field characteristics of a moderate aspect ratio supersonic rectangular jet were examined at two overexpanded, a perfectly expanded, and an underexpanded jet conditions. The underexpanded and one overexpanded operating condition were of maximum screech, while the second overexpanded condition was of minimum screech intensity. Streamwise particle image velocimetry was performed along both major and minor axes of the jet and the measurements were made up to 30 nozzle heights, h, where h is the small dimension of the nozzle. Select cross planes were examined using stereoscopic particle image velocimetry to investigate the jet development and the role streamwise vortices play in jet spreading at each operating condition. The results show that streamwise vortices present at the nozzle corners along with vortices excited by screech tones play a major role in the jet evolution. All cases except for the perfectly expanded operating condition exhibited axis switching at streamwise locations ranging from 11 to 16 nozzle heights downstream of the exit. The overexpanded condition of maximum screech showed the most upstream switch over, while the underexpanded case showed the farthest downstream. Both of the maximum screeching cases developed into a diamond cross-sectional profile far downstream of the exit, while the ideally expanded case maintained a rectangular shape. The overexpanded minimum screeching case eventually decayed into an oblong profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.