Abstract

The knowledge of jet mixing and its enhancement of elliptic jet are important in a propulsion system of aircraft, rocket, and missile’s system design for advancement of combustion via fuel-air mixture increment, lowering the jet noise and reduction of the plume infrared (IR) signature. The jet issuing from a twin elliptic orifice is non-uniform in shape that promotes the faster mixing and it influences by orifice exit conditions, so knowledge of absence of boundary layer and jet mixing characteristics is important. Hence, an experimental work helps to study the jet mixing for a twin elliptic orifice of aspect ratio two at nozzle pressure ratios of one, two, and three. The proximity between the orifices kept as one to 3mm in steps of one. The experimental readings were taken using pitot probe. The results revealed that jet mixing is faster and effective when the proximity between the orifices is closer to each other than the faraway distances at measured nozzle pressure ratios. Difference in orifice jet core exerted a noticeable influence at high proximity levels of nozzle pressure ratio of three and four for elliptic orifice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call