Abstract

In aquifers in which freshwater flows above saltwater, a mixing layer develops between the two water bodies. In a typical regional aquifer, this mixing layer is thin compared to the length scale of the aquifer. Its modeling by available numerical codes is impractical due to the needed fine discretization. Here, an approximate model of the mixing layer in steady state 3D flow is developed, based on the boundary layer approach. At first, mixing is neglected and a sharp interface solution is derived. Subsequently, the flow and mixing equations are rewritten in a curvilinear coordinates system, attached to the sharp interface solution. In line with the boundary layer approximation, only transverse dispersion is considered. A simplified solution for the mixing layer is obtained by assuming similarity and using von Karman integral method. The approach is demonstrated for Yarkon–Taninim basin (Israel), a Karstic aquifer extending over 6000 km 2 . The main aim of the research was to identify the regional scale transverse dispersivity for the aquifer. The determined value was α T ≃ 0.04 m . This is an important finding, as it is the first time the parameter is evaluated for an aquifer at regional scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.