Abstract
In this study, we conducted molecular dynamics simulations to investigate the mechanical mixing and deformation behavior of hcp Ti/fcc Al bimetal formed by ultrasonic welding (UW). To analyze the effect of the interface shape, we considered sixteen sinusoidal interfaces of various heights and spatial periods along with the flat interface. Mechanical mixing between Ti and Al occurs mainly in the vibrational loading direction, while it is suppressed in the interface-normal direction, as the loading direction lies within the slip planes of both the hcp and fcc structures. The degree of mechanical mixing depended on the shape of the interface. According to the simulation results, mechanical mixing becomes active as the sinusoidal height increases, and the spatial period decreases because of the enlarged interface areas. During the bonding process, phase transformation is observed at the sinusoidal interface; hcp Ti is converted to fcc Ti as misfit dislocations formed at the interface glide as Shockley partials on the slip plane owing to the applied vibrational loading. A simple shear test was performed to analyze the welding strength. Although sinusoidal Ti/Al interfaces can have a welding strength that is higher than that of a flat interface, we found that the welding strength was not closely related to the degree of mechanical mixing. Rather, the welding strength was affected by the interaction between a wall of misfit dislocations, stacking fault tetrahedra, and lattice dislocations generated near the interface during the UW process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.