Abstract

Desulfurization technology is vital in the removal of sulfur compounds in diesel to attain clean fuels. In this research, the mixing assisted oxidative desulfurization (MAOD) in conjunction with a high shear mixer was used with the catalyst of the activated carbon supported phosphotungstic acid. This study discusses the desulfurization of a simulated diesel, containing 2.3 wt% S of dibenzothiophene and benzothiophene in real fuel oil. The influences of mixing speed (8,000 rpm to 16,800 rpm), mixing time (30 min to 90 min), and mixing temperature (25°C to 65°C) were examined for the sulfur oxidation. A 2k full factorial design and a face-centered cube design were utilized for the screening and optimization studies, respectively, in the experimental runs. The analysis of variance was able to determine and generate a simplified quadratic model to predict the response in the MAOD process. The optimum variables for sulfur conversion were achieved at 88.5 min (mixing time), 16,800 rpm (mixing speed), and 63.28°C (mixing temperature). The confirmatory run resulted in percent oxidation of 62.37 % and validated the generated model. Moreover, the fundamental properties of diesel oil were analyzed for comparison prior to and after the MAOD method. The results revealed the retention of essential properties of the simulated diesel oil even after the MAOD treatment step. Thus, the MAOD process has successfully preserved the properties of diesel oil even after its treatment process. This indicates a promising result of the MAOD process favorable for its future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.